一款独特的单片装配系统实现了一种高度稳定的二极管泵浦固态激光光源,它能够获得比光纤激光器更宽的光谱,因此更适合于打标应用。
光纤激光器技术已经从2002年的“缝隙角色”(niche play)成长为今天的主流激光器技术,然而二极管泵浦固态激光器的发展又如何呢?尽管在过去的5年间,二极管泵浦固态(DPSS)激光器可能在性能指标方面没有太大改善,但是其在制造工艺上的进步,却对它们的性能产生了积极的影响。
美国相干公司开发了一种独特的装配机制,用于装配DPSS激光器谐振腔中实现必需的性能和成本特征的光学元件,同时还开发了机器辅助的装配方法,用以实现单元到单元的高度一致性。一般的工业激光打标应用要求光源结构坚固,并且在瞄准稳定性、高光束质量(低M2值)以及低噪声方面具有较高的性能。在很宽的工作温度范围以及苛刻的工业制造环境中,激光器必须要十分可靠地保持上述性能。而且,打标应用对成本极其敏感,因此用于打标的激光器的制造成本必须要低廉。
光纤激光器:劳动密集型
光纤激光器完全是由光纤——又长又细的玻璃纤维制成的。这既是长处也是缺点。由于光纤本身仅比人的头发略粗,因此光纤激光器的制造过程中大部分工作是对光纤的操作和封装。
从基本结构上看,光纤激光器包括两个光纤布拉格光栅和一段增益光纤,此外还需要将光束从多模二极管光源耦合到增益光纤中,这通常是通过增加一个叫做合束器的元件来实现的。这五个光学元件——光纤布拉格光栅、合束器、增益光纤、合束器以及另一个光纤布拉格光栅要熔接在一起。
如今,这种光纤激光器(尤其是用于打标的激光器)的结构可以采取另外一种叫做主振功率放大器(MOPA)的形式来实现。这种结构的起始端不是光纤布拉格光栅,而是一个单模激光二极管,后面是一级或二级功率放大器。这些放大器是由与第一个例子中相同的增益光纤与合束器构成的。
为了使这两种基本结构在工业应用中足够稳固,激光器的封装就成了一个关键问题。应力和热隔离是光纤激光器系统中要仔细控制的关键因素。应力可能引起光纤折射率的改变,从而影响激光输出模式;而热隔离对于制造光纤包层和熔接节点至关重要。
由于光纤又细又长,在发射激光的过程中释放出来的任何热量都会散布到整根光纤。因此,就增益光纤来说,将光纤缠绕在线轴上或者把光纤埋入热复合物中,以便于将热量从整根光纤上移走就变得非常必要。对于MOPA结构,尽管它的起始端是一个熔接在放大器上的单模二极管激光器,放大器的增益光纤也必须以这样的方式进行热隔离。
光纤激光器最令人惊叹的特征不是它的性能,而是上面所描述的所有步骤——光纤被缠绕到封装包中,以及激光器的装配,都是由手工完成的。通常在低功率光纤激光器中,成本的主要部分不是二极管,而是装配和机械部件。现在还很难想象未来光纤激光器在装配过程中不再需要大量的手工操作。