激光的最初中文名叫做“镭射”、“莱塞”,是它的英文名称LASER的音译,是取自英文Light Amplification by Stimulated Emission of Radiation的各单词的头一个字母组成的缩写词。意思是“受激辐射的光放大”。
什么叫做“受激辐射”?它基于伟大的科学家爱因斯坦在1916年提出了的一套全新的理论。这一理论是说在组成物质的原子中,有不同数量的粒子(电子)分布在不同的能级上,在高能级上的粒子受到某种光子的激发,会从高能级跳到(跃迁)到低能级上,这时将会辐射出与激发它的光相同性质的光,而且在某种状态下,能出现一个弱光激发出一个强光的现象。这就叫做“受激辐射的光放大”,简称激光。
一个科学的理论从提出到实现,往往要经过一段艰难的道路。爱因斯坦提出的这个理论也是如此。它很长一段时间被搁置在抽屉里无人问津。
1950年,波尔多一所中学的教师阿尔弗雷德·卡斯特勒同让·布罗塞尔发明了“光泵激”技术。这一发明后来被用来发射激光,并使他在1966年获得了诺贝尔物理学奖。
激光器的发明实际上提出了更多的问题。它必须使反射谐振器适应极短的波长。1951年,美国哥伦比亚大学的一位教授查尔斯·汤斯(Townes)对微波的放大进行了研究,经过三年的努力,他成功地制造出了世界上第一个“微波激射器”,即“受激辐射的微波放大”的理论。汤斯在这项研究中花费了大量的资金,因此他的这项成果被人们起了个绰号叫做“钱泵”,说他的这项研究花了很多的钱。后来汤斯教授和他的学生阿瑟·肖洛(Schawlow,诺贝尔物理奖的获得者)想,既然我们已经成功地研究了微波的放大,就有可能把微波放大的技术应用于光波。1958年,汤斯和肖洛在《物理评论》杂志上发表了他们的“发明”——关于“受激辐射的光放大”(即LASER)的论文。但是在实际中建造激光器还有许多困难,人们对激光的性质和作用都还没有清楚的认识。于是汤斯教授和肖洛并没有在此基础上继续进行研究和实验,结果这项研究的成果被第三者利用了。这位第三者的名字叫西奥多·梅曼(Maiman)。
梅曼是美国加利福尼亚州休斯航空公司实验室的研究员。在梅曼开始建造他的红宝石激光器之前,有人断言红宝石绝不是制造激光的好材料,而肖洛也支持这种观点。这使得很多人中止了用红宝石来制造激光的尝试,但梅曼却怀疑这个说法。为此,他花了一年的时间专门测量和研究红宝石的性质,终于发现上述论断所依据的基础是错误的,而红宝石确是制造激光器的好材料。从此他着手建造那个世界上第一台激光器。他的准备工作十分地详细完备,1960年7月,梅曼在加利福尼亚的休斯空军试验室进行了人造激光的第一次试验,当按钮按下时,第一束人造激光就产生了。这束仅持续了3亿分之一秒的红色激光标志着人类文明史上一个新时刻的来临。
这样,世界上第一台激光器——红宝石激光器--诞生了。它是一种固体激光器,它的激励系统是一支能突然爆发出强光的螺旋形闪光管,激光物质是一个插在螺旋管中间的4厘米长的圆柱形宝石棒,这种红宝石的主要成份是混有铬离子的氧化铝。在红宝石棒上缠有闪光玻璃管以便让晶体受光线照耀红宝石,经闪光管发出的光照射后,发出激光,通过光学谐振腔的加强和调节后,便射出一强有力的激光。
在梅曼成功之后不久,氦氖激光器也试验成功。这一系列的成功使实力雄厚的贝尔实验室也投入到激光器的研究之中,而其资金和人力资源又迅速推动着研究工作的进展。
自从1960年以来,激光家族有着迅猛的增长。现在有各种不同形状不同大小的各种各样的激光器,可以产生出不同功率、不同波长的激光。这些激光的范围包含从红外到紫外以至X射线的所有区域。
激光的发现大大鼓舞了光通信的研究工作,为科研工作者开创了意想不到的前景和研究领域,可以说没有激光的发明就不会有今天的光通信或光纤通信。
激光刚刚诞生不久就被人们称为“解决问题的工具”。科学家们一开始就意识到激光这种奇特的东西,将会像电力一样注定要成为这个时代最重要的技术因素。迄今为止,仅仅二十多年的初步应用,激光已经对我们的生活方式产生了重大影响。激光通信使我们在地球的每一个角落里都能准确迅速地进行信息交流;激光唱盘可以使我们渴望亲耳聆听世界名曲的现场演奏几近成真。总之,激光正实现着几年前还令人难以置信的技术奇迹。从工业生产到医学,从电讯通信到战争机器,科学和技术正运用激光来解决一个又一个的难题。
激光的特性
激光广泛应用的基础在于它的特性。激光单色性好,又可在一个狭小的方向内有集中的高能量,因此利用聚焦后的激光束可以对各种材料进行打孔。这是令人惊奇的。红宝石激光器中输出脉冲的总能量煮不熟一个鸡蛋,但却能在3毫米的钢板上钻出一个孔。为什么激光这么神奇呢?关键不是光的能量,而在于其功率。激光的功率是很高的,这也是它多方面被应用的基础。
激光具有单色性、相干性和方向性三大特点。
(1)单色性好
我们知道,普通的白光有七种颜色,频率范围很宽。频率范围宽的光波在光纤中传输会引起很大的噪声,使通信距离很短,通信容量很小。而激光是一种单色光,频率范围极窄,发散角很小,只有几毫弧,激光束几乎就是一条直线。氦氖激光的谱线宽度,只有10-8nm,颜色非常纯。这种光波在光纤中传输产生的噪声很小,这就可以增加中继距离,扩大通信容量。现在已研究出单频激光器,这种激光器只有一个振荡频率。用这种激光器可以把十几万路的电话信息直接传送到100km以外。这种通信系统就可满足将来信息高速公路的需要了。
(2)相干性高
一个几十瓦的电灯泡,只能用作普通照明。如果把它的能量集中到1m直径的小球内,就可以得到很高的光功率密度,用这个能量能把钢板打穿。然而,普通光源的光是向四面八方发射的,光能无法高度集中。普通光源上不同点发出的光在不同方向上、不同时间里都是杂乱无章的,经过透镜后也不可能会聚在一点上。
激光与普通光相比则大不相同。因为它的频率很单纯,从激光器发出的光就可以步调一致地向同一方向传播,可以用透镜把它们会聚到一点上,把能量高度集中起来,送入光纤,这就叫相干性高。一台巨脉冲红宝石激光器的亮度可达1015w/cm2·sr,比太阳表面的亮度还高若干倍。
光纤通信用的半导体激光器的体积很小。和普通的晶体三极管差不多。它发出的光功率一般都不太大,通常只有几毫瓦。如果把它的能量高度集中,就很容易耦合进光纤。这对增加光纤通信的中继距离,提高通信质量是很有意义的。
(3)方向性强
激光的方向性比现在所有的其他光源都好得多,它几乎是一束平行线。如果把激光发射到月球上去,历经38.4万公里的路程后,也只有一个直径为2km左右的光斑。如果用的是探照灯,则绝大部分光早就在中途“开小差”了。
普通光源总是向四面八方发散的,这作为照明来说是必要的。但要把这种光集中到一点,则绝大多数能量都会被浪费掉,效率很低。半导体激光器发出的光绝大部分都很集中,很容易射入光纤端面。
光的本性
很久以来,人们对光就进行了各种各样的研究。光到底是什么东西呢?这个问题困扰了许多有才智之士。古希腊哲学家们认为光是高速运动的粒子流。凡是发光的物体,例如太阳,都能发出这样的粒子流。当这些微小的粒子流接触到眼睛上时,就引起了人们对光的感觉。
对于光的研究在以后很长的年代里没有进展,直到伟大的科学家牛顿,才开创了一个光学研究的新世纪。牛顿在他的工作室里,用三棱镜把白光分解为从红到紫的七种色光。这是人类第一次看到光的奥妙。白光并不是单一的,而是几种不同色光的复合。进一步的研究使牛顿提出著名的光微粒说:光是由极小的高速运动微粒组成的;不同色光有不同的微粒,其中紫光微粒的质量最大,红光微粒的质量最小。利用这种学说牛顿解释了光的折射、反射和上面描述的色散现象。
微粒说合乎人们的日常直观心理要求。由于光是直线行进的,人们很容易相信光是粒子流。而且由于牛顿的巨大声望,微粒说一时独领风骚。但在牛顿的同时代人中亦有人大力批驳微粒说,荷兰人惠更斯(1629——1695)于1678年提出波动理论来解释光的本性。他认为光的微粒理论无法解释光线可以相互交叉通过而互不影响,但这却是波的基本性质。利用光的波动理论也很容易解释光的反射与折射现象。那么,到底光是波还是粒子呢?
到十九世纪初期,发现了光的干涉、绕射和偏振现象,这些行为只适合于光的波动理论解释。同时,若根据微粒理论,光在水中的传播速度要大于光在空气中的传播速度,而根据波动理论计算的结果则正好相反。在牛顿和惠更斯时期,人们还无法精确测量光速,因此无法用实验判定两理论的正误。但到了十九世纪,科技水平和实验技巧都大大发展,因此在1862年福科测得了光在水中的传播速度,证实了其小于光在空气中的传播速度。这时光的微粒说基本上是彻底被放弃了。到1863年麦克斯韦发表著名的电磁理论,揭示了光波其实是电磁波的一种,这时波动理论的最后的一个难题——传播媒质问题也被解决了。按照传统的机械波理论,光振动是在弹性媒质中的一种机械振动。由于光速极大,人们不得不臆造一种弹性极大但密度极小的媒质“以太”,作为光传播的媒质而散布在宇宙空间。可是,任何实验都测不到以太的存在,而假定它的存在却引起了许多麻烦。从而,“以太”成了波动理论之一大难题,是欲弃之而不能的“鸡肋”。但麦克斯韦的理论告诉我们,电磁波的传播不需要媒质。变化的电场产生变化的磁场,变化的磁场产生变化的电场。这样,变化电磁场的交替产生就构成了电磁波由近及远的传播。因此,如果我们把光视为一种电磁波,则“以太”难题就迎刃而解了,因为根本就不需要它,丢掉这块“鸡肋”一切就解决了。
麦克斯韦理论完美地解释了当时已知的所有光学现象
但从十九世纪末起,却发现了一系列令人困惑的新的实验结果。这些结果共同的特点是,他们无法用麦克斯韦理论来解释。其中最典型的是光电效应实验。
光电效应是由赫兹(H.R.Hertz,1857一1894)在1887年发现的。研究光电效应的装置是在一个抽成高真空的玻璃小球内,内表面上涂有感光层(阴极K),阳极A可做成直线状或圆环形。当单色光通过石英窗口照射到阴极K上时,有电子从阴极逸出,这种电子叫作光电子。如果在A、K两端加上电势差U,则光电子在加速电场的作用下飞向阳极,形成回路中的光电流。光电流的强弱由电流计读出。像这种金属受到光的照射而放出电子的现象就称为光电效应。
光电效应实验使传统的光学理论受到严峻考验。伟大的爱因斯坦于1905年提出光量子说来解释该实验。想法是革命性的,即认为光是一束束以光速运动的粒子流,每一个光粒子都携带着一份能量。光量子说受到普朗克量子说的很大影响。普朗克在解释黑体辐射问题时认为光在发射和吸收过程中具有粒子性。爱因斯坦则进一步认为光在传播过程中也具有粒子性。
光一方面具有波动的性质,如干涉、偏振等;另一方面又具有粒子的性质,如光电效应等。这两方面的综合说明光不是单纯的波,也不是单纯的粒子,而是具有波粒二象性的物质。这是认识上的不断加深而得到的结论。应该注意这也还不是最后的答案。对于光的本性,虽然经过这么多年的探索,我们所知道的也的确是太少了。光到底是什么?是在某一时刻表现为粒子,而在另一时刻表现为波?还是完全不同于我们现在所知的某种物质?这些问题也是当今的科学家们在苦苦思索的问题。
激光理论基础
直到二十世纪初,人们才在实验的基础上揭开了原子结构的奥秘。原子结构像是一个小小的太阳系,中间是原子核,电子围绕原子核不停地旋转,同时也不停地自转。原子核集中了原子的绝大部分质量,但却只占有很小的空间。原子核带正电,电子带负电,一般原子核与电子所携带的正负电荷数量相等,因此对外呈中性。电子绕核旋转具有一定的动能,同时负电荷的电子与正电荷的原子核之间存在着一定的位能。所有电子的动能与位能之和就是整个原子的能量,称为原子的内能。
这种原子模型是1911年由英国科学家卢瑟福提出的。紧接着,1913年,丹麦物理学家玻尔提出了原子只能处于由不连续能级表征的一系列状态——定态上,这与宏观世界中的情况大不相同。人造卫星绕地球旋转时,可以位于任意的轨道上,也就是说可具有任意的连续变化的能量。而