公司动态
首页>技术知识

技术支持 News

技术知识常见问题帮助中心

蓝光光纤激光器的发展

2008-5-13   杭州远华激光

  一、前言 

    蓝光波段激光在高密度数据存储、海底通信、大屏幕显示 (需要蓝绿光构造全色显示)、检测、生命科学、激光医疗等领域有着广泛的应用价值。目前商业化的固体激光器激光波长主要在近红外和红外波段。在固体激光器中欲获得蓝色激光输出,主要有以下三种方法:(1)利用宽禁带半导体材料直接制作蓝光波段的半导体激光器;(2)利用非线性频率变换技术对固体激光进行倍频;(3)利用上转换技术在掺稀土的晶体、玻璃或光纤中实现蓝激光输出。对于可见波段的半导体激光二极管(LD),蓝光LD的研制需要昂贵的设备和衬底材料,同时LD的光束质量不尽人意,在许多应用领域受到了限制。由LD泵浦的倍频固体激光器,需要非线性晶体材料进行频率转换,虽然光束质量很好,输出功率也很高,但系统较复杂。近年来,人们利用发光学中的频率上转换机制,大力发展具有蓝绿光输出上转换发光材料,所采用的泵浦源一般为近红外高功率半导体激光器。另外,与稀土掺杂的玻璃和晶体相比,光纤具有输出波长多、可调谐范围宽等优点。利用上转换光纤制作的光纤激光器还具有结构简单、效率高、成本低的优点。近两年来,国外对蓝光上转换光纤激光器研究很活跃,并且其商业化进程也相当迅速。 

    二、工作原理 

    蓝光光纤激光器是利用稀土离子上转换的发光机理,即采用波长较长的激发光照射掺杂的稀土离子的样品时,发射出波长小于激发光波长的光。稀土离子的上转换发光机制一般可以分为激发态吸收、能量转移和光子雪崩三种过程,具体情况可以参见文献[1]。蓝光上转换光纤的输出波长一般在450~490nm之间,目前能获得蓝光输出稀土离子主要有Tm3+,Pr3+两种,但大多数情况下,为了提高泵浦吸收效率和上转换发光效率,往往采用将Tm3+或者Pr3+离子与Yb3+离子共掺的方式,通过Yb3+离子的敏化作用,利用多声子吸收的原理获得高效的上转换发光效应,Tm3+/Yb3+共掺和Pr3+/Yb3+共掺这两种方式的上转换光纤激光目前报道的最多。  

    三、研究历程 

    频率上转换发光现象最早是在石英介质中发现的,但由于其上转换发光效率低下,且在低温下工作而未引起研究人员的注意。首次获得上转换激光输出是在1971年,当时是由Johnson和Guggenheim[2]在低温下采用氙灯泵浦Ho3+/Yb3+共掺和Er3+/Yb3+的共掺的BaY2F8晶体分别获得了551nm和670nm上转换激光输出。 

    八十年代末九十年代初期,当时因为发展长波段通讯曾努力开发氟化物玻璃光纤,虽然长波通讯并未成功,稀土掺杂的ZBLAN光纤作上转换增益介质,却得到很多有意义的上转换激光结果。ZBLAN光纤中掺杂的稀土离子主要有Pr3+、Er3+、Tm3+、Ho3+等,其中掺Pr3+或者Pr3+/Yb3+共掺ZBLAN光纤的上转换激光输出在当时报道最多,这是因为Pr3+离子在上转换泵浦机理下可以产生蓝、绿、橙黄、红的多种波段的可见光。1989年Allain等[3]报道了在77K低温下采用647nm和676nm泵浦Tm3+:ZBLAN光纤中获得455和480nm上转换激光输出,这是首次利用上转换原理在氟化物光纤中获得了可见波段的激光输出。

  • 上一个内容:
  • 下一个内容:
  • 联系我们

    在线QQ

    回顶部